植物生态学报 ›› 2015, Vol. 39 ›› Issue (8): 773-784.DOI: 10.17521/ cjpe.2015.0074
所属专题: 生态系统碳水能量通量
• • 下一篇
谭丽萍1,2, 刘苏峡1*(), 莫兴国1, 杨丽虎1, 林忠辉1
收稿日期:
2014-12-29
接受日期:
2015-06-30
出版日期:
2015-08-01
发布日期:
2015-08-17
作者简介:
*作者简介:E-mail:
基金资助:
TAN Li-Ping1,2, LIU Su-Xia1,*(), MO Xing-Guo1, YANG Li-Hu1, LIN Zhong-Hui1
Received:
2014-12-29
Accepted:
2015-06-30
Online:
2015-08-01
Published:
2015-08-17
Contact:
Su-Xia LIU
About author:
# Co-first authors
摘要:
基于河北崇陵流域人工林涡度相关通量观测数据, 采用通径分析和分段回归解析了水热碳通量与土壤水分、饱和水汽压差、空气和土壤温度, 及净辐射、光合有效辐射等环境因子的关联性。结果表明, 通径分析法揭示了各指标的主导/次要因子的直接及间接效应, 显热通量和水分利用效率的主要影响因子为饱和水汽压差, 而潜热通量、碳通量的影响因子以辐射、温度为主; 分段回归法进一步探讨了次要因子对主导因子的限制作用, 当0.20 m3·m-3 <土壤水分含量≤0.35 m3·m-3时, 潜热通量、生态系统呼吸及水分利用效率与其主导因子间相关性最高, 当饱和水汽压差≤1.0 kPa时, 净生态系统生产力、总生态系统生产力与其主导因子间相关性最高; 两种方法的有机结合, 使我们对生态水文过程各驱动因子有了清晰的宏观认识, 并量化了次要因子起限制作用的数量范围。
谭丽萍, 刘苏峡, 莫兴国, 杨丽虎, 林忠辉. 华北人工林水热碳通量环境影响因子分析. 植物生态学报, 2015, 39(8): 773-784. DOI: 10.17521/ cjpe.2015.0074
TAN Li-Ping,LIU Su-Xia,MO Xing-Guo,YANG Li-Hu,LIN Zhong-Hui. Environmental controls over energy, water and carbon fluxes in a plantation in Northern China. Chinese Journal of Plant Ecology, 2015, 39(8): 773-784. DOI: 10.17521/ cjpe.2015.0074
数据集(时间尺度) Data set (time scale) | 斜率 Slope | 截距 Intercept | 决定系数 Determination coefficient (R2) |
---|---|---|---|
30分钟 30 min | 0.60 | 27.5 | 0.76 |
1天 One day | 0.71 | 21.3 | 0.78 |
1月 One month | 0.99 | 5.3 | 0.93 |
表1 不同时间尺度上的能量闭合情况
Table 1 Energy balance on different time scales
数据集(时间尺度) Data set (time scale) | 斜率 Slope | 截距 Intercept | 决定系数 Determination coefficient (R2) |
---|---|---|---|
30分钟 30 min | 0.60 | 27.5 | 0.76 |
1天 One day | 0.71 | 21.3 | 0.78 |
1月 One month | 0.99 | 5.3 | 0.93 |
图1 研究期间日平均气温、土壤温度、净辐射、降水量、土壤水分含量和饱和水汽压差的季节变化。
Fig. 1 Seasonal changes in average daily air temperature, soil temperature, net radiation, precipitation, soil water content and vapor pressure deficit over the study period.
图2 研究期间显热通量、潜热通量、总生态系统生产力、净生态系统生产力、生态系统呼吸和水分利用效率的季节变化。
Fig. 2 Seasonal changes in sensible heat, latent heat, gross ecosystem production, net ecosystem production, ecosystem respiration, and water use efficiency over study period.
通量 Flux | 决定系数 Determination coefficient | 自变量 Independent variable | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | |
---|---|---|---|---|---|
显热通量 H | 0.27 | 饱和水汽压差 VPD | 0.59 | 0.11 (VPD → Ta → H ) | |
空气温度 Ta | -0.28 | 0.29 (Ta → VPD → H ) | |||
潜热通量 LE | 0.94 | 净辐射 Rn | 0.57 | 0.66 (Rn → Ta→ LE) | 0.32 (Rn → SWC → LE) |
空气温度 Ta | 0.33 | 0.68 (Ta → Rn → LE) | 0.67 (Ta → SWC → LE) | ||
土壤水分含量 SWC | 0.12 | 0.44 (SWC → Rn → LE) | 0.63 (SWC → Ta→ LE) | ||
净生态系统生产力 NEP | 0.34 | 光合有效辐射 PAR | 0.54 | 0.18 (PAR → VPD→ NEP) | 0.28 (PAR → Ta→ NEP) |
饱和水汽压差 VPD | -0.28 | 0.36 (VPD → PAR→ NEP) | 0.25 (VPD → Ta→ NEP) | ||
空气温度 Ta | 0.25 | 0.32 (Ta → PAR→ NEP) | 0.14 ( Ta → VPD→ NEP) | ||
总生态系统生产力 GEP | 0.76 | 空气温度 Ta | 0.85 | 0.20 (Ta → VPD→ GEP) | 0.42 (Ta → PAR→ GEP) |
饱和水汽压差 VPD | -0.43 | 0.49 (VPD → Ta→ GEP) | 0.47 (VPD → PAR→ GEP) | ||
光合有效辐射 PAR | 0.41 | 0.57 (PAR → Ta→ GEP) | 0.26 (PAR → VPD→ GEP) | ||
生态系统呼吸 RE | 0.90 | 土壤温度 Ts | 0.86 | 0.63 (Ts → SWC → RE) | |
土壤水分含量 SWC | 0.11 | 0.80 (SWC → Ts → RE) | |||
水分利用效率 WUE | 0.50 | 空气温度 Ta | -0.17 | -0.34 (Ta → VPD→ WUE) | -0.41 (Ta → SWC → WUE) |
饱和水汽压差 VPD | -0.44 | -0.37 (VPD → Ta→ WUE) | -0.12 (VPD → SWC→ WUE) | ||
土壤水分含量 SWC | -0.33 | 0.49 (SWC→ Ta→ WUE) | -0.13 (SWC → VPD→ WUE) |
表2 环境因子对各通量及相关指标的直接通径系数和间接通径系数
Table 2 Direct and indirect path coefficients of environmental factors on fluxes and related indices
通量 Flux | 决定系数 Determination coefficient | 自变量 Independent variable | 直接通径系数 Direct path coefficient | 间接通径系数 Indirect path coefficient | |
---|---|---|---|---|---|
显热通量 H | 0.27 | 饱和水汽压差 VPD | 0.59 | 0.11 (VPD → Ta → H ) | |
空气温度 Ta | -0.28 | 0.29 (Ta → VPD → H ) | |||
潜热通量 LE | 0.94 | 净辐射 Rn | 0.57 | 0.66 (Rn → Ta→ LE) | 0.32 (Rn → SWC → LE) |
空气温度 Ta | 0.33 | 0.68 (Ta → Rn → LE) | 0.67 (Ta → SWC → LE) | ||
土壤水分含量 SWC | 0.12 | 0.44 (SWC → Rn → LE) | 0.63 (SWC → Ta→ LE) | ||
净生态系统生产力 NEP | 0.34 | 光合有效辐射 PAR | 0.54 | 0.18 (PAR → VPD→ NEP) | 0.28 (PAR → Ta→ NEP) |
饱和水汽压差 VPD | -0.28 | 0.36 (VPD → PAR→ NEP) | 0.25 (VPD → Ta→ NEP) | ||
空气温度 Ta | 0.25 | 0.32 (Ta → PAR→ NEP) | 0.14 ( Ta → VPD→ NEP) | ||
总生态系统生产力 GEP | 0.76 | 空气温度 Ta | 0.85 | 0.20 (Ta → VPD→ GEP) | 0.42 (Ta → PAR→ GEP) |
饱和水汽压差 VPD | -0.43 | 0.49 (VPD → Ta→ GEP) | 0.47 (VPD → PAR→ GEP) | ||
光合有效辐射 PAR | 0.41 | 0.57 (PAR → Ta→ GEP) | 0.26 (PAR → VPD→ GEP) | ||
生态系统呼吸 RE | 0.90 | 土壤温度 Ts | 0.86 | 0.63 (Ts → SWC → RE) | |
土壤水分含量 SWC | 0.11 | 0.80 (SWC → Ts → RE) | |||
水分利用效率 WUE | 0.50 | 空气温度 Ta | -0.17 | -0.34 (Ta → VPD→ WUE) | -0.41 (Ta → SWC → WUE) |
饱和水汽压差 VPD | -0.44 | -0.37 (VPD → Ta→ WUE) | -0.12 (VPD → SWC→ WUE) | ||
土壤水分含量 SWC | -0.33 | 0.49 (SWC→ Ta→ WUE) | -0.13 (SWC → VPD→ WUE) |
图3 不同空气温度(Ta)条件下显热通量对饱和水汽压差的响应。A, Ta < 0 ℃。B, Ta > 0 ℃。
Fig. 3 Changes in sensible heat with vapor pressure deficit under different air temperature (Ta). A, Ta < 0 °C. B, Ta > 0 °C.
图4 不同土壤水分含量(SWC)条件下潜热通量对净辐射的响应。A, 0.10 m3·m-3 < SWC ≤ 0.20 m3·m-3。B, 0.20 m3·m-3 < SWC ≤ 0.35 m3·m-3。C, 0.35 m3·m-3 < SWC < 0.45 m3·m-3。
Fig. 4 Changes in latent heat with net radiation under different soil water content (SWC). A, 0.10 m3·m-3 < SWC ≤ 0.20 m3·m-3. B, 0.20 m3·m-3 < SWC ≤ 0.35 m3·m-3. C, 0.35 m3·m-3 < SWC < 0.45 m3·m-3.
图5 不同饱和水汽压差(VPD)条件下净生态系统生产力对光合有效辐射的响应。A, VPD ≤ 1.0 kPa。B, VPD > 1.0 kPa。
Fig. 5 Changes in net ecosystem production with photosynthetically active radiation under different vapor pressure deficit (VPD). A, VPD ≤ 1.0 kPa. B, VPD > 1.0 kPa.
图6 不同土壤水分含量(SWC)条件下生态系统呼吸对土壤温度的响应。A, 0.10 m3·m-3< SWC ≤ 0.20 m3·m-3。B, 0.20 m3·m-3 < SWC ≤ 0.35 m3·m-3。C, 0.35 m3·m-3< SWC < 0.45 m3·m-3。
Fig. 6 Changes in ecosystem respiration with soil temperature under different soil water content (SWC). A, 0.10 m3·m-3< SWC ≤0.20 m3·m-3. B, 0.20 m3·m-3< SWC ≤ 0.35 m3·m-3. C, 0.35 m3·m-3 < SWC < 0.45 m3·m-3.
图7 不同土壤水分含量(SWC)条件下水分利用效率对饱和水汽压差的响应。A, 0.10 m3·m-3 < SWC ≤ 0.20 m3·m-3。B, 0.20 m3·m-3< SWC ≤ 0.35 m3·m-3。C, 0.35 m3·m-3 < SWC < 0.45 m3·m-3。
Fig. 7 Changes in water use efficiency with vapor pressure deficit under different soil water content (SWC). A, 0.10 m3·m-3 < SWC ≤ 0.20 m3·m-3. B, 0.20 m3·m-3 < SWC ≤ 0.35 m3·m-3. C, 0.35 m3·m-3< SWC < 0.45 m3·m-3.
生态系统 Ecosystem | 研究区域 Study area | 通量 Flux | 主导因子 Primary factor | 参考文献 Reference |
---|---|---|---|---|
针叶林 Coniferous forest | 中国江西 Jiangxi, China | 显热通量 H | 饱和水汽压差(非干旱胁迫期) VPD (non-drought stress period) | He et al., 2011 |
混交林 Mixed forest | 中国北京 Beijing, China | 显热通量 H | 土壤温度 Ts | Li & Yu, 2013 |
人工杨树林 Poplar plantation | 中国北京 Beijing, China | 潜热通量 LE | 净辐射 Rn | Zhou et al., 2013 |
橡树草原 Oak savanna | 美国 America | 潜热通量 LE | 土壤水分含量 SWC | Chen et al., 2008 |
杉木林 Fir plantation | 中国湖南 Hunan, China | 净生态系统生产力 NEP | 光合有效辐射、气温 PAR, Ta | Zhao, 2011 |
混交林 Mixed forest | 中国河南 Henan, China | 净生态系统生产力 NEP | 光合有效辐射 PAR | Tong et al., 2009 |
针叶林 Coniferous plantation | 中国江西 Jiangxi, China | 净生态系统生产力 NEP | 光合有效辐射 PAR | Huang et al., 2011 |
杉木林 Fir planation | 中国湖南 Hunan, China | 总生态系统生产力 GEP | 气温 Ta | Zhao, 2011 |
桉树林 Eucalyptus forest | 澳大利亚 Australia | 总生态系统生产力 GEP | 光合有效辐射 PAR | Kilinc et al., 2013 |
杉木林 Fir plantation | 中国湖南 Hunan, China | 生态系统呼吸 RE | 土壤温度 Ts | Zhao, 2011 |
冷杉林 Fir plantation | 加拿大 Canada | 生态系统呼吸 RE | 土壤水分含量 SWC | Jassal et al., 2008 |
人工杨树林 Poplar plantation | 中国北京 Beijing, China | 水分利用效率 WUE | 饱和水汽压差 VPD | Zhou et al., 2013 |
稀疏草原 Savanna woodland | 澳大利亚 Australia | 水分利用效率 WUE | 土壤水分含量 SWC | Eamus et al., 2013 |
表3 不同生态系统各通量主要的影响因子
Table 3 The primary driving forces on ecosystem flux in different ecosystems
生态系统 Ecosystem | 研究区域 Study area | 通量 Flux | 主导因子 Primary factor | 参考文献 Reference |
---|---|---|---|---|
针叶林 Coniferous forest | 中国江西 Jiangxi, China | 显热通量 H | 饱和水汽压差(非干旱胁迫期) VPD (non-drought stress period) | He et al., 2011 |
混交林 Mixed forest | 中国北京 Beijing, China | 显热通量 H | 土壤温度 Ts | Li & Yu, 2013 |
人工杨树林 Poplar plantation | 中国北京 Beijing, China | 潜热通量 LE | 净辐射 Rn | Zhou et al., 2013 |
橡树草原 Oak savanna | 美国 America | 潜热通量 LE | 土壤水分含量 SWC | Chen et al., 2008 |
杉木林 Fir plantation | 中国湖南 Hunan, China | 净生态系统生产力 NEP | 光合有效辐射、气温 PAR, Ta | Zhao, 2011 |
混交林 Mixed forest | 中国河南 Henan, China | 净生态系统生产力 NEP | 光合有效辐射 PAR | Tong et al., 2009 |
针叶林 Coniferous plantation | 中国江西 Jiangxi, China | 净生态系统生产力 NEP | 光合有效辐射 PAR | Huang et al., 2011 |
杉木林 Fir planation | 中国湖南 Hunan, China | 总生态系统生产力 GEP | 气温 Ta | Zhao, 2011 |
桉树林 Eucalyptus forest | 澳大利亚 Australia | 总生态系统生产力 GEP | 光合有效辐射 PAR | Kilinc et al., 2013 |
杉木林 Fir plantation | 中国湖南 Hunan, China | 生态系统呼吸 RE | 土壤温度 Ts | Zhao, 2011 |
冷杉林 Fir plantation | 加拿大 Canada | 生态系统呼吸 RE | 土壤水分含量 SWC | Jassal et al., 2008 |
人工杨树林 Poplar plantation | 中国北京 Beijing, China | 水分利用效率 WUE | 饱和水汽压差 VPD | Zhou et al., 2013 |
稀疏草原 Savanna woodland | 澳大利亚 Australia | 水分利用效率 WUE | 土壤水分含量 SWC | Eamus et al., 2013 |
1 | Bernier PY, Bréda N, Granier A, Raulier F, Mathieu F (2002). Validation of a canopy gas exchange model and derivation of a soil water modifier for transpiration for sugar maple (Acer saccharum Marsh.) using sap flow density measurements.Forest Ecology and Management, 163, 185-196. |
2 | Chen XY, Rubin Y, Ma SY, Baldocchi D (2008). Observations and stochastic modeling of soil moisture control on evapotranspiration in a Californian oak savanna.Water Resources Research, 44, 99-119. |
3 | Du JJ, Chen ZW (2010). Method of path analysis with SPSS linear regression.Bulletin of Biology, 45(2), 4-6.(in Chinese) |
[杜家菊, 陈志伟 (2010). 使用SPSS线性回归实现通径分析的方法. 生物学通报, 45(2), 4-6.] | |
4 | Eamus D, Cleverly J, Boulain N, Grant N, Faux R, Villalobos-Vega R (2013). Carbon and water fluxes in an arid-zone Acacia savanna woodland: An analyses of seasonal patterns and responses to rainfall events. Agricultural and Forest Meteorology, 182-183, 225-238. |
5 | Ge ZM, Zhou X, Kellomäki S, Peltola H, Wang KY (2011). Climate, canopy conductance and leaf area development controls on evapotranspiration in a boreal coniferous forest over a 10-year period: A united model assessment.Ecological Modeling, 222, 1626-1638. |
6 | Guo L (2010). The Variations of Water Use Efficiency and Evapotranspiration over a Plantation in the Southern Part of Hilly Areas of North-China. PhD dissertation, Graduate University of Chinese Academy of Forestry Sciences, Beijing.(in Chinese with English abstract) |
[国琳 (2010). 华北低丘南段山地人工林蒸散和水分利用效率的变化特征. 博士学位论文, 中国林业科学院研究生院, 北京.] | |
7 | He YW, Wang QB, Wen XF, Wang JL, Sun XM, Wang HM (2011). The diurnal trends of sensible and latent heat fluxes of a subtropical evergreen coniferous plantation subjected to seasonal drought.Acta Ecologica Sinica, 31, 3069-3081.(in Chinese with English abstract) |
[贺有为, 王秋兵, 温学发, 王建林, 孙晓敏, 王辉民 (2011). 季节性干旱对中亚热带人工林显热和潜热通量日变化的影响. 生态学报, 31, 3069-3081.] | |
8 | Huang H, Meng P, Zhang JS, Gao J, Jia CR (2011). Seasonal variations and environmental control impacts of evapotranspiration in a hilly plantation in the mountain areas of North China.Acta Ecologica Sinica, 31, 3569-3580. |
(in Chinese with English abstract) [黄辉, 孟平, 张劲松, 高峻, 贾长荣 (2011). 华北低丘山地人工林蒸散的季节变化及环境影响要素. 生态学报, 31, 3569-3580.] | |
9 | Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas- fir stand.Global Change Biology, 14, 1305-1318. |
10 | Jing YH, Xing LW (2006). Path analysis and its application.Statistical Education, (2), 24-26.(in Chinese) |
[敬艳辉, 邢留伟 (2006). 通径分析及其应用. 统计教育, (2), 24-26.] | |
11 | Kilinc M, Beringer J, Hutley LB, Tapper NJ, McGuire DA (2013). Carbon and water exchange of the world’s tallest angiosperm forest. Agricultural and Forest Meteorology, 182-183, 215-224. |
12 | Launiainen S (2010). Seasonal and inter-annual variability of energy exchange above a boreal scots pine forest.Biogeosciences, 7, 3921-3940. |
13 | Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, Jarvis P, Jensen NO, Katul G, Mahli Y, Matteucci G, Meyers T, Monson R, Munger W, Oechel W, Olson R, Pilegaard K, Paw UKT, Thorgeirsson H, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation.Agricultural and Forest Meteorology, 113, 97-120. |
14 | Li C, He HL, Liu M, Su W, Zhang LM, Wen XF, Yu GR (2008). The design and application of CO2 flux data processing system at ChinaFLUX.Geo-Information Science, 10, 557-565.(in Chinese with English abstract) |
[李春, 何洪林, 刘敏, 苏文, 伏玉玲, 张雷明, 温学发, 于贵瑞 (2008). ChinaFLUX CO2通量数据处理系统与应用. 地球信息科学, 10, 557-565.] | |
15 | Li YT, Yu XX (2013). Research of the heat balance in a typical Platycladus orientalis plantation in the west mountain area of Beijing.Journal of Basic Science and Engineering, 21, 600-607.in Chinese with English abstract) |
( [李轶涛, 余新晓 (2013). 北京西山典型侧柏人工林热量平衡研究. 应用基础与工程科学学报, 21, 600-607.] | |
16 | Li ZQ, Yu GR, Wen XF, Zhang LM, Ren CY, Fu YL (2004). The evaluation of energy balance closure of ChinaFLUX.Science in China Series D: Earth Sciences, 34, 46-56.(in Chinese) |
[李正泉, 于贵瑞, 温学发, 张雷明, 任传右, 伏玉玲 (2004). 中国通量观测网络(ChinaFLUX)能量平衡闭合状况的评价. 中国科学D辑: 地球科学, 34, 46-56.] | |
17 | Liu ZP, Shao MA, Wang YQ (2011). Effect of environmental factors on regional soil organic carbon stocks across the Loess Plateau region, China.Agriculture, Ecosystems & Environment, 142, 184-194. |
18 | Oliphant AJ, Grimmond CSB, Zutter HN, Schmid HP, Su HB, Scott SL, Offerle B, Randolph B, Randolph JC, Ehman J (2004). Heat storage and energy balance fluxes for a temperate deciduous forest.Agricultural and Forest Meteorology, 126, 185-201. |
19 | Tang X, Chen WJ, Li CY, Zha TS, Wu B, Wang XP, Jia X (2013). Net carbon exchange and its environmental affecting factors in a forest plantation in Badaling, Beijing of China.Chinese Journal of Applied Ecology, 24, 3507-3064.(in Chinese with English abstract) |
[唐祥, 陈文婧, 李春义, 查天山, 吴斌, 王小平, 贾昕 (2013). 北京八达岭林场人工林净碳交换及其环境影响因子. 应用生态学报, 24, 3057-3064.] | |
20 | Tong XJ, Zhang JS, Meng P, Yin CJ, Gao J, Huang H, Guo L (2009). Relationship between net ecosystem carbon exchange and meteorological factors in a plantation in the hilly area of the North China.Acta Ecologica Sinica, 29, 6638-6645.(in Chinese with English abstract) |
[同小娟, 张劲松, 孟平, 尹昌君, 高峻, 黄辉, 国琳 (2009). 华北低丘山地人工林生态系统净碳交换与气象因子的关系. 生态学报, 29, 6638-6645.] | |
21 | Wang YH, Jing CQ, Bai J, Li LH, Chen X, Luo GP (2014). Characteristics of water and carbon fluxes during growing season in three typical arid ecosystems in central Asia.Chinese Journal of Plant Ecology, 38, 795-808.(in Chinese with English abstract) |
[王玉辉, 井长青, 白洁, 李龙辉, 陈曦, 罗格平 (2014). 亚洲中部干旱区3个典型生态系统生长季水碳通量特征. 植物生态学报, 38, 795-808.] | |
22 | Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oecher W, Tenhunen J, Valetini R, Verma S (2002). Energy balance closure at FLUXNET sites.Agricultural and Forest Meteorology, 113, 223-243. |
23 | Xiao JF, Sun G, Chen JQ, Chen H, Chen SP, Dong G, Gao SH, Guo HQ, Guo JX, Han SJ, Kato T, Li YL, Lin GH, Lu WZ, Ma MG, McNultly S, Shao CL, Wang XF, Xie X, Zhang XD, Zhang ZQ, Zhao B, Zhou GS, Zhou J (2013). Carbon fluxes, evapotranspiration, and water use efficiency of terrestrial ecosystems in China. Agricultural and Forest Meteorology, 182-183, 76-90. |
24 | Yang B, Pallardy SG, Meyers TP, Gu LH, Hanson PJ, Wullschileger SD, Heuer M, Hosman KP, Riggs JS, Sluss DW (2010). Environmental controls on water use efficiency during severe drought in an Ozark forest in Missouri, USA.Global Change Biology, 16, 2252-2271. |
25 | Yu GR, Sun XM (2006). Principles of Flux Measurement in Terrestrial Ecosystems. China Higher Education Press, Beijing. |
(in Chinese) [于贵瑞, 孙晓敏 (2006). 陆地生态系统通量观测的原理与方法. 高等教育出版社, 北京.] | |
26 | Yu GR, Wen XF, Li QK, Zhang LM, Ren CY, Liu YF, Guan DX (2005). Seasonal patterns of Chinese typical subtropical and temperate forest ecosystem respiration and its response to environmental changes. Science in China Series D: Earth Sciences, 34, 84-94.(in Chinese) |
[于贵瑞, 温学发, 李庆康, 张雷明, 任传友, 刘允芬, 关德新 (2005). 中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征. 中国科学D辑: 地球科学, 34, 84-94.] | |
27 | Yue P, Zhang Q, Zhao W, Wang JS, Wang RY, Yao YB, Wang S, Hao XC, Yang FL, Wang RA (2013). Effects of clouds and precipitation disturbance on the surface radiation budget and energy balance over loess plateau semi-arid grassland in China.Acta Physica Sinica, 62, doi:10.7498/aps.62.209201. |
(in Chinese with English abstract) [岳平, 张强, 赵文, 王劲松, 王润元, 姚玉璧, 王胜, 郝小翠, 阳伏林, 王若安 (2013). 云和降水扰动对黄土高原半干旱草地辐射收支及能量分配的影响. 物理学报, 62, doi:10.7498/aps.62.209201.] | |
28 | Zhao ZH (2011). A Study on Carbon Flux Between Chinese Fir Plantations and Atmosphere in Subtropical Belt. PhD dissertation, Center South University of Forestry & Technology, Changsha.(in Chinese with English abstract) |
[赵仲辉 (2011). 亚热带杉木林生态系统与大气间的碳通量研究. 博士学位论文, 中南林业科技大学, 长沙.] | |
29 | Zhou J, Zhang ZQ, Sun G, Fang XR, Cha TG, Zhang Y, Wang XP, Chen JQ, Chen JQ (2013). Environmental controls on water use efficiency of a poplar plantation under different soil water conditions.Acta Ecologica Sinica, 33, 1465-1474.(in Chinese with English abstract) |
[周洁, 张志强, 孙阁, 方显瑞, 查同刚, 张燕, 王小平, 陈俊崎, 陈吉泉 (2013). 不同土壤水分条件下杨树人工林水分利用效率对环境因子的响应. 生态学报, 33, 1465-1474.] | |
30 | Zhu ZL, Sun XM, Wen XF, Zhou YL, Tian J, Yuan GF (2006). The study of eddy covariance flux data processing of ChinaFLUX network.Science in China Series D: Earth Sciences, 36, 34-44.(in Chinese) |
[朱治林, 孙晓敏, 温学发, 周艳莲, 田静, 袁国富 (2006). 中国通量网(China- FLUX)夜间CO2涡度相关通量数据处理方法研究. 中国科学D辑: 地球科学, 36, 34-44.] | |
31 | Zhuang JX, Wang WZ, Wang JM (2013). Flux calculation of eddy-covariance method and comparison of three main softwares.Plateau Meteorology, 32, 78-87.(in Chinese with English abstract) |
[庄金鑫, 王维真, 王介民 (2013). 涡动相关通量计算及三种主要软件的比较分析. 高原气象, 32, 78-87.] |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[5] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[6] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[7] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[8] | 曹珍, 刘永英, 宋世凯, 张莉娜, 高德. 陆地生境岛屿藓类植物小岛屿效应驱动因素分析——以太行山脉中段山顶为例[J]. 植物生态学报, 2023, 47(1): 65-76. |
[9] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[10] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[11] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[12] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[13] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[14] | 罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应[J]. 植物生态学报, 2021, 45(5): 552-561. |
[15] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19